How Engineers Will Make The Costa Concordia Float Once Again

Next week, Italians will finally say goodbye to the wrecked Costa Concordia cruise ship that has been sitting off the coast of Giglio Island for two and a half years.

Ladderlimb

One for the DIY fan, the award winning LadderLimb is a helpful ladder accessory that allows you to securely hang in place buckets...

Make Hand Music With Your Own Pair Of Imogen Heap's Gloves

Imogen Heap is one of those musicians who has long embraced tech, and now she's giving you a chance to get your hands on her musical gloves.

13 Of The Weirdest Computer Mice We've Ever Seen

Not too long ago, we dived into the world of unconventional, strange and often horrible computer pointing devices...

G-BOOM Wireless Bluetooth Boombox Speaker

Winner of “Speaker of the Year” from iLounge, ultimate Bluetooth Boombox pumps out powerful sound and full bass...

Japanese Researchers Develop Artificial Brain That Uses the Internet to Learn New Things


We have seen the future of artificial intelligence, and they're plugged into the world wide web. Researchers at Japan's Tokyo Institute of Technology, led by Dr. Osamu Hasegawa, unveils SOINN, an artificial brain that actually uses the internet learn and perform new tasks.


With previous methods, for example, face recognition by digital cameras, it's necessary to teach the system quite a lot of things about faces. When subjects become diverse, it's very difficult for people to tell the system what sort of characteristics they have, and how many features are sufficient to recognize things. SOINN can pick those features out for itself. It doesn't need models, which is a very big advantage.


Japanese Researchers Make 581 Copies of Same Mouse through 25-Rounds of Cloning



Japanese researchers have successfully made 581 exact genetic copies of one mouse after 25 rounds of cloning. They say that these "perfectly cloned mice could pave the way for milk and meat from 'super' animals created in the lab."

According to Doctor Teruhiko Wakayama: This technique could be very useful for the large scale production of superior quality animals, for farming or conservation purposes. The rodents live a normal lifespan and the process can be carried on indefinitely through successive generations. The cloned mice showed no signs of growing old prematurely and appeared mentally and physically perfect."


5 Most Habitable Super Earths Discovered by Researchers



The term "super-Earth" refers to an extrasolar planet with a mass higher than Earth's, but substantially below the mass of the Solar System's smaller gas giants Uranus and Neptune, which are both more or less 15 Earth masses. Further on you will see five of the most habitable super-Earths discovered by researchers.

Gliese 163 c


Gliese 163 c is a potentially habitable exoplanet orbiting the red dwarf star Gliese 163. The parent star is 15.0 parsecs (approximately 49 light-years) from the Sun, in the constellation Dorado. Gliese 163 c is one of three planets discovered in the system. With a mass at least 6.9 times that of the Earth, it is classified as a super-Earth (a planet of roughly 1 to 10 Earth masses).

Tau Ceti e


Tau Ceti e is an unconfirmed planet that may be orbiting the nearby Sun-like star Tau Ceti at 11.905 light years of the Sun. It's the fourth planet of the system in distance to its star. It is notable due to its predicted habitability and Earth-like properties, with an Earth Similarity Index of 0.77 and an orbit that places it on the hot inner edge of Tau Ceti's habitable zone. Though assuming it is a terrestrial planet like Earth, it would likely be 1.8 times larger in size than the Earth.

Gliese 581 d


Gliese 581 is a proposed extrasolar planet orbiting the star Gliese 581 approximately 20 light-years away in the constellation of Libra. It was the third planet claimed in the system and (assuming a six-planet model) the fifth in order from the star.

Though not confirmed to be a terrestrial planet and significantly more massive than Earth (at 3.1 Earth masses), the Super-Earth is the first exoplanet of terrestrial mass proposed to orbit within the habitable zone of its parent star. Assuming its existence, computer climate simulations have confirmed the possibility of the existence of surface water and these factors combine to a relatively high measure of planetary habitability. It would have an Earth Similarity Index of 0.74.

Gliese 581 c


Gliese 581 c is a planet orbiting the red dwarf star Gliese 581. It is the second planet discovered in the system and the third in order from the star. With a mass at least 5.6 times that of the Earth, it is classified as a super-Earth. Gliese 581 c initially generated interest because it was originally reported to be the first potentially Earth-like planet in the habitable zone of its star, with a temperature right for liquid water on its surface, and by extension, potentially capable of supporting extremophile forms of Earth-like life.

In astronomical terms, the Gliese 581 system is relatively close to Earth, at 20.3 light years (192 trillion km or 119 trillion miles) in the direction of the constellation of Libra. This distance, along with the declination and right ascension coordinates, give its exact location in our galaxy. It is identified as Gliese 581 by its number in the Gliese Catalogue of Nearby Stars; it is the 89th closest known star system to the Sun.

Gliese 581 g


Gliese 581 g is an extrasolar planet claimed to orbit the red dwarf star Gliese 581, 22 light-years from Earth in the constellation of Libra. Gliese 581 g has attracted attention because it is near the middle of the habitable zone of its parent star. That means it could sustain liquid water on its surface and could potentially host life similar to that on Earth.

If it is a rocky planet, favorable atmospheric conditions could permit the presence of liquid water, a necessity for all known life, on its surface. With a mass 3.1 to 4.3 times Earth's, Gliese 581 g is considered a super-Earth and is the planet closest in size to Earth known in a habitable zone. This makes it the most Earth-like Goldilocks planet found outside the Solar System and the exoplanet with the greatest recognized potential for harboring life. The supposed detection of Gliese 581 g after such a short period of searching and at such close proximity has led some astronomers to hypothesize that the proportion of stars with habitable planets may be greater than ten percent.